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This document began as a short answer to what I thought was a simple question from 

Stacey Freedenthal at the University of Denver. I have expanded it well beyond her 

question, and I have slightly distorted her question to simplify the problem, but I think 

that it addresses questions that others may have. After a lot of work it turns out that the 

question actually was simple, though I didn’t recognize it at the time. 

 

This entry is going to be long and rambling because I want to explain several things about 

contingency tables, chi-square, dependent samples, and research design. Besides, I wrote 

it primarily for myself and have considered several ancillary questions. 

 

The Problem 

Stacey collected data on help-seeking behavior in school children. The data were 

collected in the fall and again in the spring after a possible intervention. There were two 

groups, one of which received an intervention and the other served as a control. She 

found that help-seeking didn’t increase significantly within either group (going from 60% 

to 64.9% in the treatment group and 54.4% to 55.4% in the control group. But she also 

wanted to make between-group comparisons in the amount of improvement in help-

seeking. (Did one group improve significantly more than the other?) Her question was 



complicated by different sample sizes both within and between groups, but I am going to 

ignore that. 

 

To broaden the usefulness of this document I am going to leave the specifics of Stacey’s 

study somewhat to the side and discuss a number of ways that the study might be run and 

the ways that it might be analyzed. Any clumsiness in the designs is my fault, not hers. 

 

Measuring Independent Groups Once 

Let’s consider one of the simplest ways that this study might be run with independent 

measurements. We will measure a group of children in the fall after no intervention and a 

different group of children in the spring after they have received some intervention. 

Notice that these measurements are independent because they come from different 

children. We might find that the fall group, which has not received an intervention, 

requested help 55 times while the spring group, which had received the intervention, 

asked for help 65 times. Is that difference significant? I don’t know and I don’t know 

how to know other than to say that 65 is a bigger number than 55. I don’t think that there 

is a statistical test that can lead us any further because we can not compute a standard 

error on which to base a test. 

 

So let’s modify the design to count not only the number of children asked for help one or 

more times, but also the number of children that never asked for help. (The groups are 

still independent.) Now we can calculate the proportion of children who sought help. 

Suppose that in each case there were 70 children and in the fall group 42 children sought 



help and in the spring  45 sought help. Then the proportions are 42/70 = .60 and 45/70 = 

.643. We can test the difference in at least two ways—and I am going to drag in a third 

way to set up what follows. 

 

Because the groups are independent we can use a standard z  test to compare the two 

percentages.  
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However we could also set this up as a chi-square test, which will be useful with respect 

to what follows. 

  

 Sought Help  

 Yes No  

Fall 42 28 70 

Spring 45 25 70 

 87 53 140 

 

 Chi-square = 0.2733,  p = .601 



The effect is not significant and you get the same probability whether you used chi-

square or the test on proportions, as you should. Remember that I have independent 

groups in the fall and spring. 

 

Just to make sure that everything is correct, and to lead to what follows, I will set up a 

simple sampling study. I will draw a sample of 70 cases from a population where p = .60 

and another 70 cases from a population where p = .6429. I do this by drawing 70 random 

numbers between 0 and 1 and counting the proportion of times the random number is less 

than .60 (or less than .6429.) For each draw of 140 cases these proportions should hover 

somewhere in the vicinity of .60 and .6429. I then compute the difference in proportions, 

repeat this process 10,000 times, and then find the standard deviation of the resulting 

distribution of differences. When I do this I get 

 >The mean of the differences is  0.04331143 

>The standard error of the differences is  0.08193536 

>z = .528 

>p = .597 

This standard error should be close enough to .0820 in anybody’s book. So at least I am 

not completely off in left field. 

 

One Sample Measured Twice—Dependent Measurements 

What we have just done is nice for independent samples, but that is probably not the way 

that most people would run the study. If I were doing it I would probably take one group 

of children and count the proportion of children seeking help in the fall. Then I would 



institute my intervention on these same children and calculate the proportion of children 

who sought help in the spring after an intervention. I would then test the difference in 

those two proportions. That sounds reasonable. But now the samples are not independent 

and that really messes things up. What it does is to seriously underestimate the standard 

error of the differences in proportions. It took me a while to figure out why this would be, 

but I think that I have now figured it out, which is why I am going through this 

convoluted discussion. 

 

Suppose that 60% of your 70 students (= 42 students) in the fall sought help. Because this 

is the dependent sample case, we use those same 70 students again in the spring. It could 

be that those same 42 students (plus a few more to get up near p = .6429) sought help in 

the spring. ON THE OTHER HAND, it could be that an entirely different set of 

(approximately) 45 students sought help in the spring. Does this make a difference? Yes! 

The problem gets complicated because we need to change how we record out data. We 

need to know if Johnny sought help in the fall and in the spring. We can’t just say 42 kids 

sought help one time and 45 kids sought help the other. That requirement may or may not 

be feasible experimentally, but we need it statistically. 

 

The following are three tables that I set up to mirror what I think is going on. In the first I 

deliberately had mostly repeaters—if you sought help in the fall you also sought help in 

the spring. In the second I relaxed that somewhat but not completely. If you sought help 

in the fall there was a good, but not perfect, chance that you would seek help in the spring 

and quite a few who did not seek help in the fall did go ahead and seek it in the spring. In 



the third scenario I pretty much made spring help-seeking independent of fall help-

seeking. But in all three cases I had (approximately) 60% help seekers in the fall and 

64.29% help seekers in the spring, so that part of the data does not change. 

 

Mostly the same students seek help 

 

 Spring  

 

Fall 

 Yes No 

Yes 42 0 42 

No 3 25 28 

 45 25 70 

 

Notice that this table is fundamentally different from the table earlier. Here I know that 3 

children who did not seek help in the fall did seek it in the spring. This is not your 

standard chi-square contingency table. In fact it is part of what is called McNemar’s test, 

which is covered in Chapter Six of Statistical Methods in Psychology, 8
th

 ed. The critical 

feature of McNemar’s test is to ask if more people switched from No to Yes than 

switched from Yes to No. (Notice that I have entered the changes—the off-diagonal 

entries—in bold. We ignore the data on the main diagonal. If we label the cells 

A B 

C D 

  

then the formula for McNemar’s chi-square is 
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Using R to run the statistical test I have 

         McNemar's Chi-squared test 

data:  data  

McNemar's chi-squared = 3, df = 1, p-value = 0.08326 

 

Although the difference is not significant, it isn’t way off. But just wait! 

 

A lot of the same students seeking help but a bunch of new ones as well 

 

 

 Spring  

 

Fall 

 Yes No 

Yes 35 7 42 

No 10 18 28 

  45 25 70 

 

Here R gives a different result even though 60% seek help in the fall and 64.29% seek 

help in the spring. The data are no where near significant. 

                 McNemar's Chi-squared test 

data:  data  

McNemar's chi-squared = 0.5294, df = 1, p-value = 0.4669 



 

 

A random sample of students switch—whether you are Yes in the fall has nothing to 

do with whether you are Yes in the spring. 

 

 

   Spring  

 

Fall 

 Yes No 

Yes 27 15 42 

No 18 10 28 

  45 25 70 

 

From R we get 

         McNemar's Chi-squared test 

data:  data  

McNemar's chi-squared = 0.2727, df = 1, p-value = 0.6015 

 

The probability for the chi-square in McNemar’s test is almost exactly the same 

as the probability we obtained when the observations were independent.  That is because 

when I created this last set of data I made the response in the spring independent of the 

response in the fall. 

 

BUT the question that I have often wondered about, but not enough to worry about it too 

much, was why the results changed when the data were not independent. Why does a lack 

of independence matter? Agresti (2002) says that the lack of independence affects the 

standard error, but as the test is run here we don’t see a standard error—though there 



would be one. So I started playing with a simple sampling design in R to see if I could 

see what happens to the standard error. 

 

A Simple Sampling Study 

First I will try to create a model with a scheme like that behind the first set of data—the 

observations are very clearly not independent. I will repeat it 10,000 times and look at the 

standard deviation of the differences between proportions, which is the standard error of 

the difference. Then I will do that all over with a model with a scheme like the third set—

the observations are very close to independent. (The results for a scheme like the second 

set would fall in the middle.) 

 

To do this I created the Before data, which would have a mean proportion of .60. Then I 

created the After data by taking whatever number of Yeses I got with Before and taking, 

ON AVERAGE, 4.29% of 70 more cases to add to the ones I already had. In other words, 

the same people who said yes the first time said yes the second PLUS a couple more 

because 64.29 is more than 60. This is the extreme because everyone who had a yes first 

was forced to have it again in the spring. 

 

This time the mean difference in proportions was .04930, which is very close to what it 

should be. The standard deviation of the difference was 0.0243, which is much smaller 

than the standard error was in the independent case where I tested the difference of 

independent proportions (0.0820). Agresti told me that this should happen because the 

lack of independence underestimates the standard error. And the standard error should be 



small because so much of the spring data is dominated by the fall data. If in one 

replication there were 58% Yeses in the fall, then there are going to be very close to 58% 

in the spring because I would only add about 6.29% of 70. If we had a weird replication 

with only 50% of yeses in the fall, and I had only about 6.29% of 70 to that, I am still 

going to be down close to 50% and the difference will again be small. Since almost all of 

the differences will be small, the standard error will be small. The spring data cannot 

differ much from the fall data. 

 

But now I want to see if that standard error rises when I change the sampling scheme. In 

what I just did I maximized the lack of  independence by making sure that it was the same 

people getting Yes both times, plus a few more the second time. Now I am going to a 

case where I am using the same people, but I am drawing data where their responses are 

(almost?) forced to be independent. In other words we will have, on average 60% yes in 

Before and 64.29% yes in After, but I won’t impose any requirement that those who were 

scored Yes the first time are more likely to be Yes the second. This will make it possible 

for the spring data to differ considerably from the fall in some replications, so the 

standard deviation of differences (the standard error) will be much larger. 

 >The mean of the differences is  0.04325571 

>The standard error of the differences is  0.08155602 

This is almost exactly what we found with the case of two independent groups, and it 

should be because I allowed the responses to be independent even if they came from the 

same children. Notice how large the standard error is here.  

 



Two Groups With Repeated Measures Fall and Spring 

Now we come to the fun stuff. This is the question that Stacey originally asked. How do 

we test to see if the change in the Intervention group is significantly different from the 

change in the control group? I am sticking roughly to her data, where it is unlikely that 

the difference in change is significant, so don’t get your hopes up. For the Intervention 

group the fall and spring proportions were (nearly) 60% and 64.29%. For the Control 

group the fall and spring proportions were (nearly) 54.4% and 55.4%. (I say ―nearly‖ 

because I had to fudge things to get reasonable integer frequencies for the cells because I 

set my ns at 70 whereas hers varied. I also assume that I had 70 kids in each group and 

that I know who was a Yes both times, who was a Yes and then a No, etc.) 

 

Suppose that I had the following data 

 

Treatment      Control 

  Spring  

  

Fall 

 Yes No 

Yes 32 10 42 

No 13 15 28 

  45 25 70 

 

  Spring  

  

Fall 

 Yes No 

Yes 30 8 38 

No 9 23 32 

  39 31 70 

What follows is based on work by Marascuilo & Serlin (1979, British Journal of 

Mathematical and Statistical Psychology). The logic of the test is much easier than you 

might suppose. 



 

The important data from both of these tables are the data in the cells that represent change 

from fall to spring. You will note that for the treatment group 13/(10+13) = 13/23 = 

56.52% of the changes were from not seeking help to seeking help. In the control group 

9/17 = 52.94% of the changes were toward seeking help. All we need to ask is whether 

these two percentages are significantly different. Using a test on two independent 

proportions we have 
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 where p is the average of p1 and p2
 
 and q = 1 – p.  

 p(z >  +0.22487) = .822 

The probability under the null is .822, so we can certainly not reject the null hypothesis.  

 

If we set the same data up as a standard contingency table we would have 

  

  Condition  

  

Change 

 Treatment Control 

Increase 13 9 22 

Decrease 10 8 18 

  23 17 40 

 

From the chi-square test (without a correction for continuity) we have 

>chisq.test(data, correct = F) 



         >Pearson's Chi-squared test 

         >X-squared = 0.0506, df = 1, p-value = 0.822 

which is the same result. 

 

This Doesn’t Answer All of the Problems 

Although each of the solutions above is correct for the particular design, It leaves out 

several possible designs. For one thing it might be possible to count the help-seeking 

behaviors but not be able to record which child sought help. Perhaps it is the same few 

kids asking over and over again, or perhaps it is most of the class asking relatively few 

times. That can make a difference, as we have seen. 

 

And of course you have the common problem that differences may be due to classrooms 

rather than the intervention. In my first design we might find that the intervention group 

did better not because of the intervention but because they had a teacher that was seen as 

more willing to help. 
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